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Abstract 

This paper looks at Kirchhoff’s rules for circuit analysis are applications of conservation laws to circuits. The first 

rule is the application of conservation of charge, while the second rule is the application of conservation of energy. 

Conservation laws, even used in a specific application, such as circuit analysis, are so basic as to form the foundation 

of that application. Current source is a circuit element that maintains a constant current flow regardless of the voltage 

developed across its terminals as this voltage is determined by other circuit elements. That is, an ideal constant current 

source continually provides a specified amount of current regardless of the impedance that it is driving and as such, 

an ideal current source could, in theory, supply an infinite amount of energy. Ideal current source is called a “constant 

current source” as it provides a constant steady state current independent of the load connected to it producing an I-

V characteristic represented by a straight line. As with voltage sources, the current source can be either independent 

(ideal) or dependent (controlled) by a voltage or current elsewhere in the circuit, which itself can be constant or time-

varying.Ideal constant current sources are represented in a similar manner to voltage sources, but this time the current 

source symbol is that of a circle with an arrow inside to indicates the direction of the flow of the current. The direction 

of the current will correspond to the polarity of the corresponding voltage, flowing out from the positive 

terminal. However as practical current sources have an internal source resistance, this takes some of the current so the 

characteristic of this practical source is not flat and horizontal but will reduce as the current is now splitting into two 

parts, with one part of the current flowing into the parallel resistance, RP and the other part of the current flowing 

straight to the output terminals. 

Ohms law tells us that when a current, (i) flows through a resistance, (R) a voltage drop is produce across the same 

resistance. The value of this voltage drop will be given as i*RP. Then VOUT will be equal to the voltage drop across 

the resistor with no load attached. We remember that for an ideal source current, RP is infinite as there is no internal 

resistance, therefore the terminal voltage will be zero as there is no voltage drop. In 1845, a German physicist, Gustav 

Kirchhoff developed a pair or set of rules or laws which deal with the conservation of current and energy within 

electrical circuits. These two rules are commonly known as: Kirchhoffs Circuit Laws with one of Kirchhoffs laws 

dealing with the current flowing around a closed circuit, Kirchhoffs Current Law, (KCL) while the other law deals 

with the voltage sources present in a closed circuit, Kirchhoffs Voltage Law, (KVL). 
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Introduction 

Kirchhoffs First Law   states that the “total current or charge entering a junction or node is exactly equal to the 

charge leaving the node as it has no other place to go except to leave, as no charge is lost within the node“. In other 

words the algebraic sum of ALL the currents entering and leaving a node must be equal to zero, I(exiting) + I(entering) = 0. 

This idea by Kirchhoff is commonly known as the Conservation of Charge. 

Kirchhoffs Current Law 

 

  

Here, the three currents entering the node, I1, I2, I3 are all positive in value and the two currents leaving the 

node, I4 and I5 are negative in value. Then this means we can also rewrite the equation as; 

I1 + I2 + I3 – I4 – I5 = 0 

The term Node in an electrical circuit generally refers to a connection or junction of two or more current carrying 

paths or elements such as cables and components. Also for current to flow either in or out of a node a closed circuit 

path must exist. We can use Kirchhoff’s current law when analysing parallel circuits. 

Kirchhoffs Second Law   states that “in any closed loop network, the total voltage around the loop is equal to the 

sum of all the voltage drops within the same loop” which is also equal to zero. In other words the algebraic sum of all 

voltages within the loop must be equal to zero. This idea by Kirchhoff is known as the Conservation of Energy. 
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Starting at any point in the loop continue in the same direction noting the direction of all the voltage drops, either 

positive or negative, and returning back to the same starting point. It is important to maintain the same direction either 

clockwise or anti-clockwise or the final voltage sum will not be equal to zero. We can use Kirchhoff’s voltage law 

when analysing series circuits. 

When analysing either DC circuits or AC circuits using Kirchhoffs Circuit Laws a number of definitions and 

terminologies are used to describe the parts of the circuit being analysed such as: node, paths, branches, loops and 

meshes. These terms are used frequently in circuit analysis so it is important to understand them. 

Common DC Circuit Theory Terms: 

 • Circuit – a circuit is a closed loop conducting path in which an electrical current flows. 

 • Path – a single line of connecting elements or sources. 

 • Node – a node is a junction, connection or terminal within a circuit were two or more circuit elements are 

connected or joined together giving a connection point between two or more branches. A node is indicated by 

a dot. 

 • Branch – a branch is a single or group of components such as resistors or a source which are connected 

between two nodes. 

 • Loop – a loop is a simple closed path in a circuit in which no circuit element or node is encountered more 

than once. 

 • Mesh – a mesh is a single closed loop series path that does not contain any other paths. There are no loops 

inside a mesh. 
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Objective: 

This paper intends to explore Kirchhoff laws which are essential for resistor network theory. They were formulated 

by the German scientist Gustav Kirchhoff in 1845. The laws describe the conservation of energy and charge in 

electrical networks. 

Kirchhoff’s Circuit Laws and application 

To determine the amount or magnitude of the electrical current flowing around an electrical or electronic circuit, we 

need to use certain laws or rules that allows us to write down these currents in the form of an equation. The network 

equations used are those according to Kirchhoff’s laws, and as we are dealing with circuit currents, we will be looking 

at Kirchhoff’s current law, (KCL). 

Gustav Kirchhoff’s Current Law is one of the fundamental laws used for circuit analysis. His current law states 

that for a parallel path the total current entering a circuits junction is exactly equal to the total current leaving 

the same junction. This is because it has no other place to go as no charge is lost. 

In other words the algebraic sum of ALL the currents entering and leaving a junction must be equal to zero as: Σ 

IIN = Σ IOUT. 

Source and linear-circuit elements are ideal circuit elements. One central notion of circuit theory is combining the 

ideal elements to describe how physical elements operate in the real world. A circuit connects circuit elements 

together in a specific configuration designed to transform the source signal (originating from a voltage or current 

source) into another signal—the output—that corresponds to the current or voltage defined for a particular circuit 

element. What we need to solve in every circuit problem are mathematical statements that express how the circuit 

elements are interconnected. This implies that we need the laws that govern the electrical connection of circuit 

elements. Kirchhoff's laws, one for voltage and one for current, determine what a connection between circuit elements 

means. These laws can help us analyze this circuit. The places where circuit elements attach to each other are 

called nodes. 

• Kirchhoff's current law 

At every node, the sum of all currents entering a node must equal zero. What this law means physically is that charge 

cannot accumulate in a node; what goes in must come out. 

• Kirchhoff's voltage law 

The voltage law says that the sum of voltages around every closed loop in the circuit must equal zero. A closed loop 

has the following obvious definition: starting at a node, trace a path through the circuit that returns you to the origin 
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node. Kirchhoff's voltage law expresses the fact that electric fields are conservative: the total work performed in 

moving a test charge around a closed path is zero. 

 Resistors in Parallel 

Let’s look how we could apply Kirchhoff’s current law to resistors in parallel, whether the resistances in those 

branches are equal or unequal. Consider the following circuit diagram: 

In this simple parallel resistor example there are two distinct junctions for current. Junction one occurs at node B, and 

junction two occurs at node E. Thus we can use Kirchhoff’s Junction Rule for the electrical currents at both of these 

two distinct junctions, for those currents entering the junction and for those currents flowing leaving the junction. 

Applying KCL to complex circuits. 

We can use Kirchhoff’s current law to find the currents flowing around more complex circuits. We hopefully know 

by now that the algebraic sum of all the currents at a node (junction point) is equal to zero and with this idea in mind, 

it is a simple case of determining the currents entering a node and those leaving the node. We can confirm by analysis 

that Kirchhoff’s current law (KCL) which states that the algebraic sum of   

Gustav Kirchhoff’s Voltage Law is the second of his fundamental laws we can use for circuit analysis. His voltage 

law states that for a closed loop series path the algebraic sum of all the voltages around any closed loop in a circuit 

is equal to zero. This is because a circuit loop is a closed conducting path so no energy is lost. 

In other words the algebraic sum of ALL the potential differences around the loop must be equal to zero as: ΣV = 0. 

Note here that the term “algebraic sum” means to take into account the polarities and signs of the sources and voltage 

drops around the loop.This idea by Kirchhoff is commonly known as the Conservation of Energy, as moving around 

a closed loop, or circuit, you will end up back to where you started in the circuit and therefore back to the same initial 

potential with no loss of voltage around the loop. Hence any voltage drops around the loop must be equal to any 

voltage sources met along the way. 

So when applying Kirchhoff’s voltage law to a specific circuit element, it is important that we pay special attention 

to the algebraic signs, (+ and -) of the voltage drops across elements and the emf’s of sources otherwise our 

calculations may be wrong. 

But before we look more closely at Kirchhoff’s voltage law (KVL) lets first understand the voltage drop across a 

single element such as a resistor. 

A Single Circuit Element 

For this simple example we will assume that the current, I is in the same direction as the flow of positive charge, that 

is conventional current flow. 
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Here the flow of current through the resistor is from point A to point B, that is from positive terminal to a negative 

terminal. Thus as we are travelling in the same direction as current flow, there will be a fall in potential across the 

resistive element giving rise to a -IR voltage drop across it. 

If the flow of current was in the opposite direction from point B to point A, then there would be a rise in potential 

across the resistive element as we are moving from a - potential to a + potential giving us a +IR voltage drop. 

Thus to apply Kirchhoff’s voltage law correctly to a circuit, we must first understand the direction of the polarity and 

as we can see, the sign of the voltage drop across the resistive element will depend on the direction of the current 

flowing through it. As a general rule, you will loose potential in the same direction of current across an element and 

gain potential as you move in the direction of an emf source. 

The direction of current flow around a closed circuit can be assumed to be either clockwise or anticlockwise and either 

one can be chosen. If the direction chosen is different from the actual direction of current flow, the result will still be 

correct and valid but will result in the algebraic answer having a minus sign. 

A Single Circuit Loop 

Kirchhoff’s voltage law states that the algebraic sum of the potential differences in any loop must be equal to zero as: 

ΣV = 0. Since the two resistors, R1 and R2 are wired together in a series connection, they are both part of the same 

loop so the same current must flow through each resistor. 

Thus the voltage drop across resistor, R1 = I*R1 and the voltage drop across resistor, R2 = I*R2 giving by KVL: 

We can see that applying Kirchhoff’s Voltage Law to this single closed loop produces the formula for the equivalent 

or total resistance in the series circuit and we can expand on this to find the values of the voltage drops around the 

loop. 

 Kirchhoff’s Circuit Loop 

We have seen here that Kirchhoff’s voltage law, KVL is Kirchhoff’s second law and states that the algebraic sum of 

all the voltage drops, as you go around a closed circuit from some fixed point and return back to the same point, and 

taking polarity into account, is always zero. That is ΣV = 0 

The theory behind Kirchhoff’s second law is also known as the law of conservation of voltage, and this is particularly 

useful for us when dealing with series circuits, as series circuits also act as voltage dividers and the voltage divider 

circuit is an important application of many series circuits. By applying Kirchhoff’s rules, we generate equations that 

allow us to find the unknowns in circuits. The unknowns may be currents, emfs, or resistances. Each time a rule is 

applied, an equation is produced. If there are as many independent equations as unknowns, then the problem can be 

solved. There are two decisions you must make when applying Kirchhoff’s rules. These decisions determine the signs 

of various quantities in the equations you obtain from applying the rules. 
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1. When applying Kirchhoff’s first rule, the junction rule, label the current in each branch and decide in what 

direction it is going.  

2. When applying Kirchhoff’s second rule, the loop rule, you must identify a closed loop and decide in which 

direction to go around it, clockwise or counterclockwise. 

Conclusion 

Kirchhoff’s Circuit laws are now known as Kirchhoff’s Voltage and Current Laws. Since these laws apply to all 

electric circuits, understanding their fundamentals is paramount in the understanding of how an electronic circuit 

functions. These pair of laws that deal with the conservation of current and energy within electrical circuits. These 

two laws are commonly known as Kirchhoff’s Voltage and Current Law. These laws help in calculating the electrical 

resistance of a complex network or impedance in case of AC and the current flow in different streams of the network. 

In the next section, let us look at what these laws state. The voltage arrows and polarity signs are just reference 

directions for voltage. When the circuit analysis is complete, one or more of the element voltages around the loop will 

be negative with respect to its voltage arrow. The signs of the actual voltages always sort themselves out during 

calculations. 

Although these laws have immortalised Kirchhoff in the field of Electrical Engineering, he has additional discoveries. 

He was the first person to verify hat an electrical impulse travelled at the speed of light. Furthermore, Kirchhoff made 

a major contribution to the study of spectroscopy and he advanced the research into blackbody radiation.  
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